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ABSTRACT

Inviscid hypersonic flow of chemically relaxing air about pointed circular
cones has been calculated using Dorodnitsyn's one=strip integral method. The cir
model used consists of 02, N2, O, N, and NO, of which the relative amounts
are controlled by six reaction equations which actually represent eighteen chem-
ical reactions. Also corsidered are the limiting cases of nonequilibrium flow,
namely, chemically frozen flow, and the flow with chemical equilibrium. Vibra-
tional equilibrium has been assumed throughout .

The principal contribution of this work lies in the method of solution.
Specifically, it is demonstrated that the replacement of the approximate tangential
momentum equation, and of all approximate species continuity equations by their
exact forms along the body surface leads to a system of equations which, first, can
be stably integrated, and second, yields results which compare quite well with
those obtained by the method of characteristics. A detailed discussion of the
polynomial approximations employed in the integral method, the introduction of a
characteristic relaxation length defined in terms of the initial species n.ass fraction
gradients, as well as many new results for hypersonic flow of air with finite rate
nonequilibrium dissociation about circular cones are further contributions of the

work reported herein.



The discussion of results includes two cases which show the very good
agreement of the results from the integral method with those from the method of
characteristics. Various other cases serve to illustrate the influence of free stream
velocity (5400 V_[m/sec] $11186), cone semi-vertex angle 20° <6 s45 ),
and altitude (31 km to 80 km) on the variation of all flow field variables. The
onalysis of a cone with constant semi-vertex angle and free stream velocity at
three different altitudes is used to demonstrate the validity, and its range, of the
nonequilibrium scaling law p_* L = constant.

For one case, the asymptotic equilibrium state of the nonequilibrium flow is
compared with the results of a conical equilibrium flow caleuiaticn. According
to theoretical considerations an agreement between the two cannot be expected,
and this is confirmed by the comparison. Although the cone surface pressures
agree very closely, it is found that the values for the asymptotic body surface
temperature are higher than those for conical equilibrium. Both, the asymptotic
surface density and the surface velocity stay below their values for conical

equilibrium.
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CHAPTER I

INTRODUCTION

Over the past few years considerable effort has been devoted to the under-
standing and the theoretical prediction of the nonequilibrium flow field conditions
encountered in hypersonic flight. Present technology dictated the use of blunted
body shapes for reentry vehicles in order to minimize the convective heating rate
to the body surface. Quite naturally, calculations of flow fields surrounding
hypersonic blunt bodies were of prime importance. For a survey of calculation
techniques for this class of problems the reader is referred to Hayes and Probstein
(Ref. 1). In particulor, the general method of integral relations, proposed by
Dorodnitsyn (Ref. 2), proved to be quite successful in predicting shock wave shapes
and other flow field variables for certain simple blunt bodies. Also, this method
is readily adaptable to machine calculations. The investigations of Shih, Baron,
Krupp and Towle (Ref. 3), Hermann and Thoenes (Ref. 4), and most recently,
Thompson (Ref. 5), are some examples of inviscid real gas flow field calculations
using the integral method.

Comparatively less attention has been paid to the high temperature real gas
flow past pointed bodies, which appear to be of growing interest and importance .
Certainly the time will come when it is desirable to land on the Earth's surface

some space probes returning from far distant planets. These probes will reenter the



atmosphere at a speed far above earth parabolic speed. Both,convective and
radiative hea’ing will occur, but because of the high speed, radiation is expected
to be the dominant source of heating. It was therefore pointed out by Allen (Ref.4)
that the shock wave sweepback provided by pointed conical entry bodies could be
used to reduce the gas luminosity grossly, and thus the total heating rate. There-
fore, besides being of fundamenial interest, the calculation of high temperature
nonequilibrium flow past pointed cones may be of very practical importance in the
near future.

It is interesting to note that one of the first approximate theories for non-
equilibrium cone flow was developed by Chapman (reported by Stephenson, Ref.7}
in order to determine relaxation times of oxygen and nitrogen vibrations. Using
essentially a stream tube method, Chapman derived equations which related the
coordinates of the curved shock wave to an effective relaxation time of the flow
in the shock layer. Having obtained shock wave coordinates from experiments,
Stephenson (Ref. 7) evaluated rel oxation times which agreed reasonably well with
data obtained from shock tube experiments.

If the flow field is entirely supersonic then the method of characteristics
is available for its calculation, provided that some initial data are available.
Caleculations using the method of characteristics were first reported by Sedney,
South and Gerber (Ref. 8) for the case of vibrationally relaxing flow of pure nit-

rogen over a wedge. These calculations were later extended to include flows past



circular cones (Ref. 9). The authors also reported the necessity of introducing
modifications in the method of characteristics in order to increase the accuracy of
the results. This work was followed by Capiaux and Washington (Ref. 10) who
treated nonequilibrium flow of an "ideal dissociating gas” (so~called Lighthill gas)
past a wedge, also using the method of characteristics.

In Ref. 11, Wood, Springfield and Pallone investigated the flow over axi-
symmetric bodies by using the method of characteristics. They employed a multi-
component gas model and included a simple model for vibration=-dissociation
coupling. Results were given for flows over blunted cones and ogival bodies.

The first application of Dorodnitsyn's integral method to the real gas flow
over pointed bodies was given by South (Ref. 12). He considered vibrationally
relaxing flow of a pure diatomic gas past a circular cone, using the one strip
approximation, and constant relaxation time. He also reported that a system of
equations containing the tangential momentum equation and the vibrational rate
equation in their exact forms could not be integrated successfully. He found it
necessary to use linear approximations in all the conservation equations. The
pressure distribution obtained from this set, together with a set of corrected
equations then served to obtain a corrected solution. The application of the two
and three strip integral method to the same problem is discussed in Ref. 13.

South and Newman (Ref. 14), and Newman (Ref. 15) discussed a modifi~

cation to the one strip integral method as applied to wedge flow. Instead of using



first order polynomials to approximate certain integrands, the integrals themselves
were replaced by weighted averages of the integrands. According to the authors,
this procedure resulted in a better description of the flow within the shock layer,
but again, it was found necessary to integrate o set of corrected equations after
obtaining an approximate solution.

Thoenes (Ref. 16) used the one strip integral method and o simplified three
component air model, applicable in the oxygen dissociation regime, to colculate
chemically relaxing flow past cones. In particular, these calculations successfully
employed the exact tangential momentum and species continuity equation, o method
which the author labelled as the "semi~exact procedure”. Results from the two
strip integral method for dissociating flow were discussed in Ref. 17.

There are other methods which have been used for the calculation of non-
equilibrium flow fields around pointed bodies. Lee (Ref. 18) evaluated vibrationally
relaxing flow over wedges by a perturbation method, while DeJarnette (Ref. 19)
presented an "artificial viscosity" method to evaluate wedge flows with simple
reloxation processes, including various schemes of vibration=dissociation coupling.
All these calculations with simple rate processes are of basic interest and valuable
for determining suitable numerical techniques. However, with the exception of
Ref. 11, they cannot describe adequately a flow field involving several simul-
taneous relaxation processes as they occur, in air for example. Presumably, this

prompted Spurk, Gerber and Sedney (Ref. 20) to calculate hypersonic flow of air



past ‘wvedges and cones by the method of characteristics, considering a five compo-
nent air model involving numerous chemical reactions. Unfortunately, the appli-
cation of the method of characteristics to nonequilibrium flow is complicated ond
computation times con be very long, even on modern computers.

No calculations, comparable to the work of Spurk, Gerber and Sedney, but
using procedures other than the method of characteristics, could be found in the
literature at the present time. It is expected that the work herein will fill this
gap by presenting o formulation of Dorodnitsyn's integral method for hypersonic
flow of a multicomponent chemically reacting gas about pointed bodies. The
principal advantage of the integral method is that it reduces the governing partial
differential equations to ordinary differential equations for which highly efficient
numerical integration techniques have been developed.

A detailed description of the multicomponent gas model for high temperature
air, and its thermodynamic properties, is given in Chapter 1. In Chapter III, the
basic partial differential equations are presented. They are cast in a suitable
coordinate system, and the discussion of applicable boundary conditions concludes
the formulation of the problem. The solution is discussed in Chapter IV. After
reviewing the method of integral relations in general, its application to the
problem at hand is described in detoil . A final section on the numerical techniques

used leads to Chapter V, which is devoted to the discussion of the results.



CHAPTER I

GAS MODEL AND THERMODYNAMICS

2.1 Gas Model

To determine the values of the flow variables within the shock layer about
@ body moving in the atmosphere at hypersonic speeds, it is necessary to account
for the effects of chemical reactions that take place within the layer. Such
reactions proceed at a finite rate, but for flow about infinite cones, the gas will
eventually reach a state of thermal and chemical equilibrium. Figure 1 presents
lines of constant compressibility factor and temperature at the surface of a cone
for equilibrium flow, using dota given in Ref. 21. Although this is a purely hypo-
thetical case, the figure shows approximately the conditions which have to be met
by the air model to be chosen. For example, if o conical vehicle with a semi-
vertex angle of thirty degrees enters the Earth's atmosphere ot an altitude of 80 km
at earth parabolic speed it is to be expected that, once equilibrium is reached on
the streamline that wets the body, the surface temperature is around five thousand
degrees Kelvin, and that a sizable fraction of the nitrogen molec‘ules must have
dissociated (Z~1.4). This example shows that, in order to calculate such flow
conditions, the gas model represertinn high temperature air must be assumed to

consist ot least of a mixture of 02, N2, NQ, O, oand N. It is urthermore



assumed that all species are in translational , rotational and vibrational equilibrium
in every Flow region, which implies a single temperature for il the degrees of
freedom. Assuming weakly interacting porticles (i .e. particles which exchange
energy only by collisions, and the collision times are small compared with the time
between collisions) partition functions may be used to calculate all thermodynamic
properties. Thus ionizatior, vibrational nonequilibrium, as well as vibration-
dissociation coupling are neglected. The latter two assumptions will be critically
examined af the end of this chopter.

The compesition of air along with other physical constants as used in the

present investigation are summarized in Teble I.

2.2 Partition Functions

Under the assumptions stated in the previous section, oll of the thermo=
dynamic properties of a gas may be derived from its partition function. Details
on the partition function may be found in any text on statistical thermodynamics
(Ref. 22, 23, 24). In this section only those relations will be summarized which
are needed for subsequent calculations.

The partition function may be defined as

Q ’"Zgj exp (-Tei’.—) (2.1)
]

where Gj is the common energy of several states, and gj is the degeneracy, that



is, the number of states of the particle which have this common energy level . In
the present investigation, the energy may be due to the translational , rotational
or vibrational motion of the particles and, in a limited way, due to the motion of
the «|ectrons within the particle. Assuming that no coupling exists between the
different modes of excitation, the partition function may be written as the product
a=a'a"a¥at 2.2)
where the factors on the right hand side of Eq. (2.2) are the partition functions
associated with the transiational, rotational, vibrational and electronic energy

levels of the particle. For diatomic molecules these factors are:

\ 3/2
o =v(2 ﬂmsz ) (2.3)
h
2
Gr% 8 12k T . Tr (2.4)
n h x 8
v \" _]
Q =[|"'exp(-e /T)] (2.5)
n
Qf = g oxp (- 9;’/1) 2.6)
j=o0

Here 8", 6", and Gje are characteristic temperatures for rotation, vibration, and
electronic excitation, respectively. Monatomic particles have no modes of rota-
tional or vibrational excitation, therefore, the respective partition functions take
the value unity. Table Il presents the atomic and molecular constants which were

used in the present calculations.



2.3 Thermodynamic Properties

2.3.1 Thermal Equation of State

According to statistical thermodynamics the partial pressure which a system
of weakly interacting particles of species i exerts on its surroundings is given in

terms of the partition function as

P, =n k T 5—%— (In Q) (2.7)

where n, denotes the number of particles of species i contained in the volume
V, and k isBoltzmann's constant. Since, as seen from Eq. (2.3) through (2.6),

only the translational partition function depends on the volume V, one obtains

3

o (InQ) = 5 (InQ") = (2.8)
Hence, the pressure becomes
_ nik T
Pi T TV 2.9)

Introducing the molecular weight Mi’ and Avogadro's number N*, Eq. (2.9) can

be rewritten as

n. M.,
= I t N *k
P ( v P ) ) T (2.10)

which is at once recognized as the equation of state of a thermally perfect gas, viz.
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Since it is assumed that each species of the gas mixture can be treated as a
thermally perfect gas, the pressure of the mixture is, according to Dalton's law,

the sum of its partial pressures, that is

p= L p =R TD o 2.12)

C, = —— (2.13)
the equation of state can be expressed as

p =PpRT ) Y, (2.14)

where the Yi are the molar concentrations defined as

C.

Y, -M—'- (2.15)
i

It is often convenient to express the pressure of the dissociated gas mixture in terms

of the gas constant of the undissociated gas. Eq- (2.14) can then be wiitten as
p=pRZT (2.16)

where R =R* /M is the specific gas constant of the undissociated gas, ond Zis

the compressibility factor defined by

Z=M 2. Y, (2.17)
|
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A gas mixture consisting of i distinct species in the dissociated state, and
of i_ speciesin the original undissociated state, requires i, mass balance
equations and (i - io) relations between the species mass fractions. The former

are, first, that the sum of all mass fractions is unity,
2.C, =1 (2.18)
|

and, second, that the mass fraction of one element is fixed. For example, for air

Mo
M

NO) Cno ~ (Coody (2.19)

Co " Co2 *(
or, alternatively
MN
N T CN2 T (MNO ) Cno T (Cngde @20

which is a direct consequence of relations (2.18) and (2.19).

2.3.2 Internal Energy and Enthalpy

Again calling on statistical thermodynamics, the intemal energy of a system

of n, weakly interacting particles is given in terms of the partition function as

9
E, =n k T2 50 (In Q) (2.21)

i
Introducing the molecular weight and Avogadro’s number, the internal energy

becomes

n, M, .
E. =< ' ') N*k 2 a—aT" (In Q) (2.22)
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Recognizing that the term (ni Mi / N*) has the dimension of mass, the specific

internal energy, that is internal energy per unit mass, can be expressed as

R* 2 3
e, = Mi T ST (In Q) (2.23)

Using Eq. (2.2) through (2.6), and (2.23), the specific internal energy for a pure

monatomic gas is

Zg. 0 exp (-e.e/T)
e.=R{gT+—JJJ ] }(2.24)

i M,
' T, ep (-57/1)
J

ond, for a pure diatomic gas,

6/ 2. g.6% exp (~82/T)
el=§’{gr+ \', +JQJJEXP(J }
i exp (9i /T) =1 }J:gj exp (_eje/.r)

(2.25)

The last terms in the above equations, representing the contribution of electronic
excitation to the interna! energy, become significant at extreme temperatures only,
and can be neglected for the range of temperatures considered in the present
investigation.

In the case of a dissociating gas mixture the dissociation energy for each
molecular species must be included in the internal energy. This energy ferm may

be expressed as

of = R [ (Cj)o‘c-] o* (2.26)
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where, in the present case, j = N2, NOQ, and the subscript o designates

2!
the undissociated state.

The total specific internal energy of @ mixture of monatomic and diatomic

gases can now be written as

E=2C e * Ze;’ (2.27)
J

The specific enthalpy of the mixture is defined as
h=E* -;L- (2.28)

and substifution of the pertinent relations into Eq. (2.28) yields, for the five com-

ponent gas mixture considered herein, the following expression for the enthalpy:

- 7 2
h R*{ 7 T2 T Y2 T YN T 2 T (Yo 7YN)
v v v
CYo®or , Y22, no o
v v v
809/T YAl N YAl
e ~1 e -1 e -1

* & &
+ - - -—
(020~ Yo2 1902 * [tV 2 Yaz ] [ty YNo]eNo}
(2.29)
Utilizing the mass balence equations, Eq. (2.19) and (2.20),in order to eliminate
the molar concentrations (YO2)0 and (YNZ)O' and also considering that in the

adopted air model (Y NO)o is zero, @ more convenient expression for the enthalpy

is easily derived from Eq. (2.29):



It is recognized that the specific enthalpy now has the more general form
h = 2 C. h. (M (2.31)
i

For the calculations in the following chapters it is convenient to define

a frozen specific heat as the partial derivative of h with respect to T, that is

cp s —aa-.?-— (2.32)

which, according to Eq. (2.31) may be expressed as

3h.
- 2: N
< ' C, 5% };:Ci Cpi (2.33)
]

Hence, like the specific enthalpy, the frozen specific heat of the gas mixture is

simply the weighted sum of the individual specific heats. An explicit expression

for cp, as derived from Eq. (2.30), is given in Appendix A.
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2.4 Rote Processes

2.4.1 Finite Rate Nonequilibrium

In general, a large number of collisions among the particles is required to
equilibrate the molecular vibrations, dissociation and higher modes of excitation
with the local translational temperature. This means that, once being in a state
of nonequilibrium, a finite amount of time is needed for the gas properties to
achieve thermodynamic equilibrium. The departure from equilibrium of o flowing
gas is characterized by the magnitude of this relaxation time T relative fo some
translational time t needed by the particles to change their state. The limiting
values of the ratic of T over t are o convenient means to characterize the
equilibrium state (T /t=0) and the frozen state (T/t==).

The purpose of this section is to present the equations which are necessary
te account for finite rate nonequilibrium effects in the calculations. Essentially
this is equivalent to finding an expression for the reloxation time T in terms of

the variables of state.

2.4.2 Species Continuity Equation

Consider an arbitrary material volume containing particles of various species,
each species forming the partial density P, - Neglecting diffusion, the mass rate
of change of the ith component in the mixture must equal the rate of production

(which may be negative or positive) of the ith species, that is



16

D "-”f.
Dr fpi dVv Wi dV (2.34)
v \'4

where W, is defined as the mass rate of formation of species i per unit volume

due to chemical reactions. Using Reynclds' transport theorem, Eq. (2.34) may be

rewritten
dp, - .
\
Since the volume considered was arbitrary, this means that
api . .
af + Vo (pi q ) = wi (2'36)

Summing over all species i, and considering that 2 o= P olso Z:Wi =0
i i

since total mass must be conserved, one obtains the overall mass conservation

equation

op
at

+9-(pq) =0 (2.37)

Replacing P, by p C, inEq. (2.36), and expanding differentials yields

ci[ gfp +V'(p§)] * "["a'?"" +q - VCE] =\/;Ii (2.38)

Since the first term on the left hand side vanishes according to Eq. (2.37), the

species continuity equation finally assumes the form

3¢, . :
Tr‘"‘ + q-VCi = (Wi/p) (2.39)

It is worth noting that the quantity (p/ Wi ) has the dimension of time, and
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therefore may be interpreted as a relaxation time for the species i. In the

following section on explicit expression for Wi will be derived.

2.4.3 Rate Equations

Following Vincenti and Kruger (Ref. 24), o chemical reaction is considered

to have the following description:

- ' +
};vi Ai + M AM 2 v'A, vM AM (2.40)

kr,M

where the \Ji are the stoichiometric coefficients of the reactants, Vi' those of the

products. A, isa so~called third body species which does not participate os o

M

reactant. kd,M and kr,M

ciation and recombination.

are the respective reaction rate constants for disso~

Defining the concentration of the species Ai by Xi, that is

X, =

o =pY, (2.41)

it is an experimentally cbserved fact that the rate of formation of any one of the

products in a single step reaction can be expressed as

Vv V

dxi i M
("d_r"')d = (v =V kg M I x. xy (2.42)

where the product on the right hand side extends over all the reactants.
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Similarly, the rate of disappearonce of any species Ai con be expressed
as

d X. V: \Y)

(“a“rl“) = (v, =Yk ox 'x M (2.43)

where again the product is taken over all of the reactants.
The net rate of production of the species A : is then the sum of its rate of

formation and its rate of disappearance, vis.

dx.  dX, d X,
77 = (=), * (%) (2.4

or, with Eq. (2.42) and (2.43):

VM vi VM v,
| = (. - 1
-~ My )["d,M X EEXT =k Xy TELX, ]

(2.45)
For thermodynamic equilibrium, the net rate of production of each and all

species must vanish (“principle of detailed balancing™), hence from Eq. (2.45):

) V!

i 1
kg M T.I X; = koM I.I X, =0 (2.46)

Eq. (2.46) can also be written in the more familiar form

. T x, i
A = K (D) 2.47)

k v, c

I‘,V\ ]:[ xi |
1

where Kc {T) is called the concentration equilibrium constant, and expression

(2.47) represents the law of mass action.
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If it is assumed that, for given temperature ond reactant concentrarions, the
rate at which a reaction proceeds in a given direction is the same whether the
system is or is not in equilibrium, Eq. (2.47) may be used to replace either kd M

’
or k in Eq. (2.45). Hence let
em 0 Eae (2.43)

ko = Kom Ko (1) (2.48)

Using this expression, and also accourting for the possibility of several species
acting as third bodies, the resulting rote of production is obtained from expression
(2.45) as

d X, Z VM v, Vi' ]
L Vo I .
=1 T WLk M K [ K DX 7= 10X J@.49)
M
Considering also that there may be m ditferent chemical reactions of the type
represented by Eq. (2.40), the total ’Ir-ufe of production of the element Ai is given
by the sum over all reactions, that is

("da'i:"“) -2 (V;"Vi)%kr,m X:\M [Kc]i-I xivi'l;-[xi\)‘l]

tot m

(2.50)
It is obvious from Eq. (2.47) that Kc (T)is, for the mith reoction, indepen-

dent of the third body species A Naturally, for different reactions, the equili-

M
brium constants are different functions of temperature. Their evaluation is dis~
cussed in section 2.5 of this chapter.

For the air rrodel used in this investigation the following set of chemical

reactions will be considered (Ref. 15):
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|
|‘d,,M
m =1 02+M+5.'|ev: 20T M (2.51)
1
kl‘,M
Il N2+M +9.8ev » 2N * M (2.52)
Mm NO+M*t6.5ev> OF+TNTM (2.53)
IV NO+C +1.4 ev > O2+N (2.54)
\Y N2 +O+3.3 ev > NO TN (2.55)
VI 02+N2+].9 ev > 2 NO (2.56)

Reactions I, 11, and 11l are the principal dissociation reactions, and, considering
the various third body species (see Table III), actuully represent fifteen different
reactions. The remaining equations represent the so cailed shuffle reactions.
Altogether, eighteen chemical reactions are corsidered between the five components
of the gas mixture.-

The application of Eq. (2.50) to the above set of reactions yields the

following expressions, already simplified by introducing the molar concentrations

Y. :
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dx
02 1 I 1
( Tt )wf { (Y5 Yoz K [ Yoz ko) * Yo M0)

MANVRAINC A )kI(NZ)] (Yo2 YN~ YNno Yo ST
¥ (YNZO “Yo2 'N2 KZI) "Yl } @.57)
(d ::\12 )t; o { (Y&~ Yng K [ i %) * Y )
* o2 Yno T YO er(OZ)] *Mno YN N2 Yo k!
" 030 Yoz Yo Ke VK. } 2.58)

d X
NOY . .2 ] I I
( ai )mf P {(pYOYN YnoKe Yozt Y2 Yo T Yo YK

) Qv Iv ) V.V
+ (Voo YN~ Yo Yo Ke YK = 0o YN™ Yz Yo Ke K

o2 VI VI (2.59)
200 ~ Yoz Yn2 Ke ke }

Proper rearrangement of terms in the corresponding expressions for the mon-

atomic species O and N shows that
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dXo dX02 dXNO

dar ) T "2 =37 T\ 2.60)
tot tot tot

dXN _ dXN2 dXNO

ar ) " "2\ RarT: 2.61)
tot tot tot

These equations can be obtained, in q simpler way, directly from the mass balance
equations, Eq. (2.19) and (2.20).

It is important to keep in mind that the expressions given by Eq. (2.57)
through (2.61) are equations representing rates of production due to chemjcal
reactions taking place in o closed system of fixed volume, assuming also o constant
temperature. As pointed out by Vincenti and Kruger (Ref. 24), they are customarily
extended to open systems of varying volume and temperature by identifying density
and temperature as the instantaneous values for the system. This implies that the
internal rafe processes in moving fluid are the same as those which occur at the
same stofe in a static system. The (d >'(i /dt)mr is r.elqted fo the mass rate of
formation of species i, os defined in the species continuity equation, by the

relation

. dXi
Wi = Mi (_E:l_t__—) (2.62)
tot

2.4.4 Reaction Rate Constants

In order to evaluate the reaction rotes given in the previous section,

expressions are needed for the rate constants. Although theories exist for the
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calculation of dissociation and recombination rate constants (Ref. 24, 26), they
are either too complex to be useful in practice, or too simplified to produce
acceptable agreement with experimental data. However, it was recognized on
experimental grounds that, for many reactions, a plot of the logarithm of the
dissociation rate constant versus reciprocal temperature produces an essentially

straight line of negative slope, which leads to the Arrhenius equation

°A

ky = A e kT (2.43)

where € is the activation energy and A some constant independent of tempera-

ture. A refinement of this expression is usually cbtoined by assuming

G*
n - T—
kd =AT e (2.64)

where 8* is the characteristic temperature of dissociation, and the constants A
and n are determined by curve fits to the experimental data. Expressions of this
type are numerous in the literature and can usually be traced to the papers by
Wray (Ref. 25) and Lin and Teare (Ref. 26). Expressions used in the present calcu-
lations were taken from Spurk, Gerber and Sedney (Ref. 20), and are listed in

Table II.

2.5 Equilibrium Constants

The equilibrium constants, defined in Eq. (2.47), are also needed for the

evaluation of the reaction rates. Following again Vincenti and Kruger (Ref. 24),
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it is found that, in terms of the partition functions, the equilibrium composition of

a gas is given by

v,! v,
IIa ' I.TQ ' A
—_—l ! = ! S exp(* *E ) (2.65)
k] R T

where AE is the difference in the bond energy of the reactants in Eq. (2.40), n,
are the numbers of particles involved, and v and Vi' are the stoichicmetric
coefficients. The n, are easily expressed in terms of the concentrations by

noticing that, according to Eq. (2.41),

iy vl Vel 2-66)

L]
1 1

Therefore, expressing the left hand side of Eq. (2.65) in terms of the concentrations

Xi , it can be shown that
- Xvi' ):\)i - Z:v[' V!

' 'v_ = (N*V) i (2.67)

HX.' Il n, '

Combining this with Eq. (2.47) and (2.65) it is seen that
Zvi - E vil H Q Vi
K (T) = (N*V) S exp (- A E ) (2.68)
c v, R* T
| IIq'
|

which, when applied fo the reactions given in Eq. (2.51) through (2.56), turns out
to be a function of temperature only. Eq. (2.68) shows also why the contributions

due to electronic excitation must not be neglected in the equilibrium constants.
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Here, the ratio of the partition function is important, while in the internal energy
their contribution is only additive.

It is clear that substitution of the proper expressions for the portition
functions in Eq. (2.68) leads to complicated functions of the temperature. In
particular, since use is often made of the equilibrium constants in comparing
dissociation and recombination rate constants, it is convenient to have them in a
simple analytic form. For this purpose Wray (Ref. 25) has fitted the equilibrium
constants calc::lated from Eq. (2.68) for the reactions given by Eq. (2.51) through

(2.56) with Arrhenius type expressions of the form
K. M =AT" exp (-8 /T) (2.69)

These expressions, given in Table IV, are employed in the present calculations.
With respect to these curve fits a remark is in order at this fime. As men-
tioned earlier, the principle of detailed balancing requires that, for a gas mixture
to be in overall equilibrium, every molecular process and its inverse must be
individually in balance. Thus it can be shown that, if the total reaction rates and
their individual contributions are set to zero, the concentration equilibrium con-

stants, for the reactions chosen herein, result as foll ows:

I _ 2
K (xo/x

Cc

02 ) equil. (2.70)

n_ .2
Ke = XN/ XN2 ) equil. 2.71)
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m
Ko = Ko XN/ XN0 ) equil. (2.72)
ond it can also be shown that
I
K
KV = —< (2.73)
K
c
v K
k' = " (2.74)
[ 4
1 I Y,
k! k K
KVI - € ¢ - c (2.75)
c m. 2 v
™ k!

Since Wray curve fitted ol the K. except for K:/I, which was determined from

K:V and K! according to Eq. (2.75), it is not surprising that Wray's expressions

for K!v and K!] differ from Kiv and K:’I as given in Table IV. For the
sake of consistency, the latter expressions were obtained from K:: through Ké“
according to Eq. (2.73) through (2.75). Numerical calculations show that the

disagreement between the Kc given by Wray and those cbtained from equations

(2.73) through (2.75) is negligible.

2.6 Equilibrium Composition

Tt was mentioned at the beginning of this chapter that is is of interest to

calculate equilibrium flow even though it is, in the exact sense, a purely
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hypothetical case. In order to do this, the equilibrium composition of the mixture

has to be determined as a function of other flow variables.

For a five component mixture this means that five linearly independent

equations are needed to solve for oll the unknowns. Equations (2.18) and (2.19),

together with Eq. (2.70) through (2.72), provide just such a set. Hence, from

Eq. (2.18) and (2.19):

2cC =1

M
O =
CO+CO2+(MNO) Cno
while from Eq. (2.70) through (2.72):
20?2
C, = O
02 I
MO Kc
20 CN2
Cn2 ™ i
MN K
.. O ( Mo
NO 111
|(c MO MN

)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

Substituting the expressions for the mass fractions COZ’ CN2 and CNO into the

mass balance equations yields
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20 2 2p 2
CO+CN+M . Co*M i N
O N ¢
M
0 NO _
cC.C. =1 (2.81)
K::“ (MO N ) o “N
and
20 2 0 -
+ —_—
Co 7 Co’ M ‘oSN T M, (2.82)
M~ K M. K
O ¢ N ¢

from which CN is obtained in terms of CO as

It

M, K

= N'¢ ~ - 20 2

CN S [mo Co — CO ] (2.83)
O MOKc

Using this equation to eliminate CN from Eq. (2.81) eventually results in a

fourth order equation for C

o:

4 3 2
O+b3 Co+b2C t b

b4 C 0 1 C tb, = 0 (2.84)

@) 0

where



¢ (2.85)

Since the b's are functions of temperature and density only, Eq. (2.84) determines
the equilibrium composition for given temperature and density. It is seen from
Eq. (2.77) that the only possible solution can be selected by requiring the atomic

oxygen mass fraction C .. found from Eq. (2.84) to satisfy

O

M

- . (O
0 =Cp = ["‘o Coz (MNO) CNo] (2.86)

2.7 Review of Assumptions

It is instructive to examine the validity of the assumption of vibrational
equilibrium which was employed throughout this chapter. A measure for the
validit of this assumption is given by the ratio of the chemical over the vibrational

relaxation time of the respective species.
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Using expressions given in Ref. 27, vibrational relaxation times for 02

and N o are given by

v -4 101.44
V. p = 1.6212:107% exp (2.87)
‘s (o)
VP = 11146-10°6 1V2 exp (-'-5%3-) (2.88)
T

where T;’ is given in sec for the pressure in N/m2 and the temperature in K.
As previously indicated, the quantity (p / W' ) has the dimension of time.
A chemical relaxation time can thus be defined as

e (2.89)
Wi

where the mass rate of formation, V-Vi , can be evaluated for O‘.2 and N2 from

Eq. (2.57), (2.58) and (2.62).

Ratios ('Td/'l‘v)i for i =0, N, are shown in Fig. 2 as function of
temperature, together with results for O2 taken directly from Ref. (28). It
should be noted that the values of 9 /T are independent of density.

It is seen from Fig. 2 that, at least for molecular oxygen and nitrogen,
vibrational relaxation times are always shorter than chemical relaxation times for
temperatures below 12, 000 %K. Hence it is concluded that, for the temperature of
interest in the present investigation, vibrational relaxation will in general proceed

much faster than chemical relaxation. Therefore, the assumption of vibrational

equilibrium is a justifiable simplification.



31

However, it is also recognized, that for temperatures above 8,000 °k
vibrational and chemical relaxation times assume valuves of the same érder of
magnitude. Strictly speaking, vibrational relaxation and vibration=dissociation
coupling should therefore be considered in this temperature range. The difficulty
here is that, although vibrational relaxation rates are known, an accurate model
for the coupling does not seem to be available. Conclusions drawn by investi-
gators in this particular field, Ref. 19 for example, leave the question open as to
the relative validity of the various models. Rather than to introduce equations of
which the effect is not yet well understood, the vibrational excitation is assumed

to be uncoupled to the dissociation, and in equilibrium at all times.



CHAPTER III

FORMULATION OF THE PROBLEM

3.1 Basic Equations

Neglecting body forces, viscosity, diffusion, heat conduction, and radi-
ation, the basic equations for sreudy, adiabatic continuum flow are the following:

Conservation of mass:

v .(pg)=0 @.1)
Conservation of momentum:
2 - — 'I
V(—%—-—-)+(qu)xq+-—p——vp=0 (3-2)
Conservation of energy:

2
q'V(h*'-%—):O

or, assuming all streamlines to originate from the same reservoir,

2
h + ——% = H = constant (2.3)

These equations are the common equations of motion which do not depend on any
particular gas model . In order to solve these equations for the unknowns, they
must be supplemented by a thermal and a caloric equation of state which do depend

on the particular gas model and were derived in Chapter II as

p=pRZT (3.4)

32
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and
h=2¢C h @ (3.5)
i
If the gas under consideration is chemically reacting, additional unknowns arise
in form of the mass fractions, Ci , hence, additional equations for the conser-
vation of species must be added to the system. For the air model used herein

these are given by Eq. (2.39), which, for steady “low, reduces to

q-vC, = —— (3.6)

where i = O, N, and NO, and the mass balance ecuations given by equations
(2.18) and (2.19).

The choice of the coordinate system is largely a matter of experience. For
the problem at hand, an orthogonal curvilinear coordinate system with coordinates
tangential and normal to the body surface (see Fig. 3) seems to be the most suitable.

From Ref. 2% one obtains for the gradient

-

e e e
h] aaxF * h2 gi * h3 25 3.7)
9%y o 9%y  hy OXg

VF =

where F isany scalar point function. For a vector point function F the diver-

gence is given by

" 5 3 3
VF SRR [Bx] (h, "3F1)+'a';'2'('“3h1':2)+'a'§<“ (hlh2F3)]

1723 3 (3.8)

and the curl by
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h]eI |’|2¢=2 h3e3
- 3 3 3
VxF =l — 3.9)
hyFy  hyFy  hgFy

The metric coefficients h ) h2 , h3 follow from the differential arc length

ds)? = h, dx )+ (h, dx2)2 + (hy dx3)2 (3.10)

Using as coordinates x, y, and O, where O is the circumferential coordinate,

one obtains from Fig. 4

h, dx, = (1 +Ky )dx

=

o

x
it

dy
h3dx3 = rjdd)=(rb+yc059)jdd) 3.11)

where K = 1/R is the body surface curvature, and
0 for plane flow

T { 1  for axisymmetric flow

Applying equations (3.7) through (3.11) to equations (3.1), (3.2) and (3.6) and

restricting to plone or axisymmetric flow, that is, zero angle of attack, the

resulting equations are as follows.

Conservation of mass:

;;(pu:j)+§a-);[(l+l<y)pvrj]=0 @.12)
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x - Momentum:

v g: 5 (1+Ky) v g;’ +Uv|<+—b!— %}f:—= 0 (3.13)
y = Momentum:
o 3L+ (1ky)y o -k LKL SR - (3.14)
Conservation of species: ) .
v aci ‘l'('l"‘K)/)vaCi -{1+K iL:
3y Y) = 0 @3.15)

The above equations, together with the thermal equation of state, the energy
equation, and two mass balance equations, form a set of ten equations for the
unknowns u, v, p, p, T and five Ci'

Before discussing the details of the solution of the above system, it will be
convenient to have equations (3.13) through (3.15) also available in the divergence
form. After some algebraic manipulations the following equations can be obtained.

X = Momentum:
3 2. ] 3 '
W[(P*DU )r"] + Sy [(]+KY)puer]
tpuvKrl-jp(1-Ky)sin® =0 (3.16)

y = Momentum:

- -j+_..a_[ + +ov2),)
S (euvr)+ 2 [ (13ky) (prov el |

'(p+DU2)Krj-jp(]+Ky)cos9=0 3.17)
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Conservation of Species:

a . a . . *
—— (v C, rj)+-a-7[(|+Ky)PvCirJ]-(1+Ky)rJWi =0 (3.18)

The boundary conditions which are needed to solve the equations established here

are given in the next section.

3.2 Boundary Conditions

3.2.1 Body Surface and Shock Conditions

The body surface is assumed to be chemically inert. The condition for flow
tangency on the body surface is given by
Vi =0 3.19)
The conditions behind the shock wave are obtained from the conservation of mass,
momentum and energy across the shock wave.
Conservation of mass:

P, V., =0V (3.20)

Vt°° B Vts (3-21)
2 2

t o = + .

% Ve Pe ps Vns Ps 8.22)
Conservation of energy:
1,2 ] 2

+—~——- - '!' ey sl .

he 2 v n® hs 2 M ns 3.23)
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where the pressure and the enthalpy are given by the equation of state, Eq. (2.16),
and the enthalpy equation, Eq. (2.30), respectively. It should be noted that the
form of the enthalpy equation implies that the molecular vibrations are in equili-
brium everywhere.

For the calculations to follow, the velocities behind the shock must be
given in the present coordinate system. The following geometric relations are
" obtained from Fig. 5:

u, = V. sinf + st cos B (3.24)

v ==V cosB tV, sinB (3.25)
ns ts

5

where the velocity components as referred to the shock are given by

poo
\' T eV _8inC (3.26)
ns ps ®
Vts = VM = V_cos O (3.27)

Fig. 4 clso indicates that the relation between the shock coordinates and the
shock wave angle T is given by

dy

"-'-a-;s— = (]+K)/s) tan B (3-28)

where, in general, 8 isa function of x.
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3.2.2 Frozen Shock Conditions

For frozen and nonequilibrium flow it will be assumed that the composition
of the air does not change across the shock, thatis, Z_ = Zs. Since, in the
present calculations, the chock wave is assumed to be a discontinuity of zero
thickness, and any possible chemical reaction would need some finite thickness
in order to take place, the assumption is a logical one.

Combining the equation of state with equations (3.20) through (3.23), it

can be shown that

Vo [ RZ,T. : o vE -2(h k)
Loz (M7 2 Jvnm-z(hs-hm)- RZ
: no s (3.29)

For any given free stream conditions (i.e. T, V

w? Ve 1 Ci°°) and the shock wave

angle O, the temperature behind the shock, T ¢ ¢ can now be found from equations
(3.29) and (2.30) by solving these equations numerically. Using the continuity
equation, Eq. (3.20), and the energy equation, Eq. {(3.23), the density ratio
across the shock is obtained as

p V .
S = o (3.30)

Peo __ - '
‘} v 2 o260 -h,)
Knowing the temperature and the density behind the shock, the static pressure

ratio across the shock becomes

pS pS TS
pm - pm [ Tm (3.3])
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which completes the calculations of the static conditions on the downstream side
of the shock wave.

Unfortunately, the solution described adbove involves an iterative calcula-
tion of the temperature Ts . Since iterations are normally time consuming, it is
impractical to calculate the shock conditions by this process ot each step in the
course of a numerical caleulation. Instead, the expressions for Ugr Vor Ts,r P, »
and P ¢ presented in this and in the previous section, may be expressed in diffe-
rential form in terms of the shock wave angle gradient. It is then possible to
integrate for some selected key varicbles, say density P and temperature T _,
while the values of the remaining variobles are determined from simple algebraic
equations.

Differentioting the expressions for Ugr Voo Ts, P and P, with respect to

x results in the following differential shock relations:

ZT: =1, 9 5 (3.32)
:is = % 9 5% (3.33)
ZZ” = RZ_(o, T,0 *0,T, 0 . (3.34)
U oLvoa, 494, k (3.35)
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-u K (3.36)

where 2. through (1

| ore dimensionless functions explicitly given in Appendix

4
B.

From Fig. 3 it may be deduced that

o= + y, cos C (3.37)

which, upon differentiation, yields

d
d

"
2= (1 -Kys) sin 6+ (1 +Kys) cos & ton B (3.38)

x

where use was made of the relation

drb
d x

= sin B (3.39)

which is cbtainable from geometry .

3.2.3 Equilibrium Shock Conditions

In this case it will be assumed that the gas instantaneously reaches the state
of thermodynamic, that is, thermal and chemical , equilibrium behind the shock,
irrespective of the conditions in the free stream which may be arbitrary . While
for frozen shock conditions the composition of the gas on the downstream side of
the shock wave is prescribed by the free stream ccmposition, it is unknown in the
present problem. The necessary additional relations are furnished by the equations

for chemical equilibrium, derived in section 2.6.
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Using the equation of state to eliminate the pressures from the equations of

conservation of mass and momentum across the shock, it can be shown that

_f.f.._ = b . (.‘2__)2- _____._._RZST-" (3.40)
P 2 2 2 )
5 V. o
n
where
RZ_ T,
b =1+ 5 (3.41)
Vn°°

The reciprocal of Eq. (3.30), which was derived from the conservation of energy,

yields .
o 2 (hs =h.)
— =1 1- > (3.42)

For given shock wave angle 0, equations (3.40) and (3.42) are two independent
relotions for the density ratio across the shock as function of density P ond
temperature Ts . Hence, assuming some reasonable values for P and 'I's ;@
solution is obtained by iteration on P and T5 ) when the difference between the
right hand sides of equations (3.40) and (3.42) assumes a specified minimum value.
Having determined the density ps and the temperature Ts ; in the course
of which the species mass fractions Cis have also been calculated, all other
flow variables are readily evaluated from the available equations.
Although equilibrium shock dota are available in the literature (Ref. 30, 31),

these data are usually presented for selected atmospheric free stream conditions at
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relatively low altitudes. The procedure described above, however, is applicable
for arbitrary combinations of free stream pressure, temperature ond composition,

as they may occur at high altitudes or in a hypersonic wind tunnel .
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CHAPTER 1V
METHOD OF SOLUTION

4.1 The Method of lntegrul Relations

4.1.1 The Method in General

In order to apply the method of integral relations as described by Dorodnitsyn

in Ref. 2, all the partial differential equations are cast into the divergence form,

namely
d 3
Fi . Gi Pl =0
dx oy i
(i=1,2, ..., m) 4.1)

Here x and y are the independent variables, while Fi ’ Gi and Hi are the
known functions of the dependent variables, and m denotes the number of
equations.

Consider now the solution of the obove system of m equations in the region
which is bounded by the beody surface and by the shock wave Yo (x). Dividing

this region into N curvilinear strips (see Fig. 6) bounded by lines

vy ==y ) .2)

where k =0, 1, 2, ..., N, the system (4.1) can be integrated with respect to

y across each strip. The result is a system of integral equations of the form
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Yk +1 SF Yk +1

i _
f % 477G e TG T [ Hpdy =0 @4.3)
Yk "k

where k =0, 1, 2, ..., N ~ 1. Using Leibniz's rule for differentiation under
the integral sign (Ref. 32), the first integral may be rewritten and the above

equations become

y
d kHFd-(kHF . )dys
d x i Y N i, k+1 T N CiL,k ) dx

Yk

G ¥ H dy =0 (4.4)

In order to evaluate the integrals, the integrands must be known functions of y.
Unfortunately the integrands Fi and Hi contain precisely those dependent
varicbles for which values are to be calculated, hence some approximations have
to be made. Generally, as an approximation, any interpolation formula can be
used which expresses the value of Fi or Hi at an arbitrary 0 Sy < Yo through its

volues on the lines y = e * For example, one may use polynomials of the form

n=0 (4.5)
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where the a i {x)and b o (x) are to be evaluated in terms of the boundary values

at the strip interfaces, say
ot y-"yk : F, = Fi,k

H. = H, k 4.6)

Performing the necessary operations on these polynomial approximations yields a

system of m. N ordinary differential equations of the following form:

N
] d ntl n+l
Z ntl dx [ain(x) (yk"“'l " )]
n=0
dy
k+1 k s
(R ke _N’F.,k) ax TG k+1- G 7

where k=0, 1, ..., N-;n=0,1, ..., Nandi =1, 2, ..., m.

The solution of the system (4.7), obtained when the region is divided into
N strips, is called the Nth approximation. It is cbvious from the above that
with higher approximations the complexity of the prablem increases considerably.
Beloiserkovskii (Ref. 37) demonstrated the convergence of the method by comparing
one=, two-, and three=strip solutions for supersonic flow past a circular cylinder.
He showed that, at least for that case, there is practically no difference between

the three solutions. Moreover, since previous investigations with simple rate
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processes (Ref. 12, 13) have shown that the first (linear) approximation also ogrzes
wall with results from other methods, the linear approximation is investigated

herein.

4.1.2 The Firs* Approximation

For the first approximation, according to the previous section, N = 1, k=0,
n =0, 1. Hence from Eq. (4.5) the polynomial approximations have the general
form
Pomcgl) *ep by @.8)

According to (4.6), and the coordinate system, (Fig. 3), it is found that at

y=0: Pi,b =ci0(x)
4.9)
Yo Pi,s —cm(x)‘l‘c”(x)ys
From (4.9) the coefficient functions in general are
¢io® = Pip
(4.10)

ci1é) = ";];'" (P~ Pip)

Applying this procedure to Fi and Hi’ the coefficient functions are given by
Eq. (4.10). Equation (4.7) may now be simplified and, for the first approximation,

results ir.
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dy
d 1 $
T B o tFip) - A (F; ¢~ Fib) Tx
2 =

¥ Ty (Gi,s Gi,b) ¥ (Hi,s +Hi,b) 0 (4.11)

s

The obove equation might be called an operator equation, permitting the
transformation of the given partial differential equations of the form (4.1) directly
into ordinary differential equations for the dependent variables along the body

surface and the shock wave boundary.

4.2 Nonequilibrium Flow

4.2.1 General Remarks

As early as 1929, Busemann (Ref. 33) showed that supersonic flow of an
inviscid gas about circular cones is characterized by the fact that the pressure and
the velocity vector are constant on coaxial conical surfaces having the same vertex
as the conical body. A consequence of this is that the shock wave, forming one
boundary of this flow field, must itself be a conical surface. It will be shown in
the discussion of the results, that, in the case of nonequilibrium, chemically
relaxing flow in this case, the time dependency of the chemical reactions destroy
this self-similarity mentioned by Busemann, even though the flow is considered
to be inviscid. Therefore, no definite statement can be made, a priori, about the

shock shape or the behavior of other flow parameters. Values for all variables



must be calculated by integrating the conservation equations together with the
equation of state and the boundary conditions in a step-by-step fashion along the
length of the cone.

Two different sets of equations will be examined. The first set, later
referred to as the standard approximation, contains all the conservation equations,
equations (3.12) through (3.15), in approximate form. The second set, later
raferred to as the semi~exact procedure, uses only the continuity and the y-
momentum equations in their approximate form, while the x-momentum and species
continuity equations are used in the exact form.

For a supersonic flow field, which will be considered here, the equations
are of quasi hyperbolic character and thus form an initial value Qroblem . Initial
values are given by the frozen flow solution to be discussed in section 4.3, where
it will also be shown that initial gradients can be derived as functions of the

initial values.

4.2.2 The Standard Approximation

The application of Eq. (4.11) to the conservation equations, Eq. (3.12) and
equations (3. 16) through (3.18), results in the following ordinary differential
equations where use was made of the fact that i = 0, and y = 0, at the body

surfoce .
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Continuity:
j:;" (pb U, rbj) + di; (ps usrsj)
- —)-,l-;- (Ps Vg rsj =Py Y fg) :y; - 35 (1 +I(ys) 0, v, rs'i (4.12)
x=Momentum:

(o raudy )]s 35 [ere,0hr) ]
¢:lys

= 1 2 ._ 2. i
_’:[(p’+p="= R N L e s

2 ‘ j
- —— : + -
(1 Kys) o Y, vsrii P UV, K r.

Ys
+ j sin O [ps(l-Kys)+pb] (4.13)
y=Momentum:
: . dy
d. J £ | J 5
ax PsYVs's) Y, (Pyu vy Ty) &

-2 2, j. j
o AL AURAR IS Sy

+ K [(ps +ps Usz) rsj + (pb +% ub2) rbj ]

+ ] cos B[Ps(l+Kys)+% ] (4.14)
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Species continuity:

_d_ iy _d j

dx (pbuberb)‘*'d (ps uscisrs)
=_...1._.( C - C j _lei
y PsYs“is s "% nbrb) dx

.2 j Jw §w
ys (1+Kys)Psvs Cisrs "‘(I"‘K)!s)rs Wis+rb wib 4.15)
Expanding the differentials and introducing the differential shock relations

given in section 3.22, the above equations assume the following form, where §

is defined as

Fa ot 4.16
"R e
Continuity:
dpb du
b . 2 do
—_t +(1+j0 Q
% dx b dx (14] cosB)(pwusﬂz*l'pst 3) dx
—1 ] - -
——ys (pSUSFl R Fy psvsFa) 4.17)
x=Momentum:
dpb d d
2 % “% -
rw +ub —a—x—‘PZDb Y E +(l+16cose)[RZs (DSTWQ]
o
+pnTsf22)+pwu52QZ+2pstusQ3] gx

1 2 y.

Ts{ P te u ) Fy=(p,*e, 40 F,
- +j 8 +
psusvs(l jocos8) (2 5Kys)

+[Pb '*'ps(l "‘Kys)] j § sin 0 } (4.18)
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y~Momentum:

. R dg
(145 8cos8) (R u v, #p Vo vg 70 Vau 8y ) 15

yS

< 2 . T '
+[pbub "'2!3511s (1+j 6 cosB)]Kys}

Species continuity:

% dx (C'bm("'is‘.)“‘,-'i Ecose)(pm Ys &

]
do
* ps Vo 03) dx
'Wib+(l+Kys)(l+j3-cos 8) W,

1
B -;: (Cib B Cis) (psus Fl "RV F3)

where FI' F., and F3 are dimensionless functions defined as

2

F, = (1 +Kys)tun g-(1 -Kys)jgsina

-n
L

('|+Kys)tcm B+j &sinod

|

F

3 = (2+3Ky)(1+] §cos )

= —-—{ps vs(usFl-vsF3)+(pb- Ps) 2 +) Scos 9+I(ys)
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(4.19)

(4.20)

4.21)

(4.22)

(4.23)

The equations given above must be supplemented by the energy equation and the

equation of state in differential form.



52

Energy:

dUb LTb
N L S

dpb dcb dT
_ b
dx sz Tb d x sz ob dx

o 9%,
- * =
P, R sz M = 0 (4.25)
|

Since the mass fractions Ci cre linearly related to each other by the two mass

State:

balance equations, only three of the five Ci are independent. Therefore,
equations (4.17) through (4.25) constitute a system of eight simultaneous diffe-
rential equations for the grc;dients of pb r Upr By Tb’ o, and three of the five
C b

It may be seen from the conservation equations in the divergence form, and
from the discussion of the integral method, that the equations presented in this
section contain linear approximations for the following terms:

Continuity: pur ]

x=Momentum: (p ‘1'902) l'j:
puvKrd - jp (1=-Ky)sin ©

y~Momentum: puvred,

(p+ pud) K ri +jp (1 +Ky) cos 8

Species continuity: ) . .
(puC, r1), (1+Ky) W; r?
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It is of interest to examine these approximations in some detail . First, it is
noted that it has no effect on the x~Momentum equation, Eq. (4.13), whether one
approximates the terms pu v K ¢ J and jp (1-Ky)sin © seporately, or combined.
The situation is analogous for the y~Momentum equation. Second, the body sur~
face curvature K (x), and the surface inclination angle €(x) are constants as
far as the linear approximations in y~direction are concerned. It is ther noted
that both of the momentum equations contain linear approximations for (p +p uz)ri
ond puv l‘j- However, while the term p (1 - Ky) is linearized in the x~Momen -
tum aquation, itis p (14 Ky)in the y-Momentum equation. This is an cbvious
discrepancy which requires particular attention.

Application of equations (4.8) through (4.10) to these terms leads to the

following relations for p (y) : y

"

, p(1-Ky) = p
P]()’)" m[pb+ sfj. y: Y]

Vp (1+Ky )-p
pz(”)zT?lE,T[Pb+,j,_s e ”]

H

Since two different values for the pressuré at any one point in the flow field are
unacceptable, P (y) ond Py (y) must be required to be the same. It can be seen
at once that this condition is satisfied for K = 0. On the other hand, for K ’i‘ 0,

it can be shown that this not oﬁly requires p and P, to be the same, but also

that



ply) = P, = P, = constant

Fortunately this discrepancy is the only one, since the application of
equations (4.8) through (4.10) to the remaining terms generally leads to only one
nonlinear function of y, each, for pu, puv, p +pu2, Pu Ci' and W' A
procedure to avoid the discrepancy altogether, and simultaneously reduce vhe
number of functions for which approximations have to be introduced, is discussed
in the next section.

Apart from this it should be noted that certain terms disappear in the con-
servation equations when either j or K, or both, are zero. In this case, no
linearizations are introduced for the respective terms. Thus, for example, when
the equations are applied to wedge flow (K =0, j =0), the linearized terms
which are actually used reduce to (pu), p, (P u2), (puv), (pu Ci) , and WI

- .

-
4.2.3 The Semi-exact Procedure

The general form of the conservation equations for the one~strip approxi~
mation, Eq. (4.11), already indicated that the equations are formulated in terms
of the variables along .f_h_e.ashaclgwave and along the body surface, only. This
situation suggests 'ti'r'é —use of the flow tangency condition, Eq. 3.19), in order to
simplify 'sr;\me of the partial differential equations before they are integrated in
y~direction, and thereby converted to ordinary differential equations. Asa

matter of fact, it is seen from equations (3.12) through (3.15) that the x-Momentum
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equation and the species continuity equation reduce to ordinary di fferential
equations in terms of the variables along the body surface when v is set to zero.
Therefore, only the overall continuity equation and the y-Momentum equation
need to be used in approximate form, which results in @ much simpler set of
equations for the semi=exact procedure. This set then consists of equations (4.17),
(4.19), and (4.21) through (4.25), while the x-Momentum and the species con-

tinuity equations are replaced by

dub dpb _

% % dx * d x ¢ (4.26)
and
dcib .
b “ax Wb~ O #.27)

respectively. Thus, the introduction of the above exact equations eliminates the
need to approximate the terms pu CIi rj, (l‘i'l(y)V;Ii rj ,and p (1-Ky). In
particuler. the discrepancy discussed in the previous section is removed by not
using an approximation for p (1 - Ky).

A careful comparison of equations (4.26) and (4.27) with their approximate
counterparts reveals that they may be expressed in a combined form by introducing
certain indicators, say € and . Setting the indicators to zero results in the
exact equations, while assigning the value unity yields the approximate equations.

Hence,



x~Momentum:

g + ey T +(1+¢€) P, U

+e (1+] Scos8) [RZ (p_T 0, +5,T.0,)

do
+
+u (R, 0,420V, 03) | 55 (4.28)

e 2 2
L R - +
Y, t(ps-'. s Y )Fl (pb ®b Yb )FZ

- +; & +
3 usvs(] j 8 cos 6)(2 5|(ys)
+ [pb+ps(1+|(ys)] j Osin © }

Species continuity:

dC,

ib _ _ . do
Py Y% T G(Cib Cis)(l‘i']ﬁ cose)(pmusﬂz‘*'psvmﬂs) =
=W, +a[(1+Ky) (145 cos 6) W,_ (4.29)

- - -
T(Cib Cis)(psusFl PsVs F3)]

Equations (4.17), (4.19), (4.24), (4.25), (4.28), and (4.29) now represent
a system of six simultaneous equations for the gradients of s B Py LI e
and 0. Noticing that the y-Momentum equation and the species continuity
equations yield the derivatives of the shock wave angle O and the mass fractions

ci'b directly, the above set is easily solved for the remaining gradients. Using



the energy equation, Eq. (4.24), ond the equation of state, Eq. (4.25), to

eliminate the derivatives of uy ond p b the following equations are cbtained:

dey, agg Ay-ay, Ay
dx B a Opm ™0 a (4.30)
11 722 12 ~ 21

dT A_-oa A

b_.  “nTa2” % 7y
d x a Gnn ™ a a (4.31)
11 722 12 721
A
do _ 3
dx - a (4-32)
33
dC;, Ay .
= (i =0, N, NO) (4.33)
d x 044

The coefficients aij and the terms Ai are functions of the variobles along the
body and the shock wave. They are explicitly given in Appendix C in their
most general form, valid for any combination of the appropriate values for j, K,
&, and €. For the present investigation which is primarily concerned with the
application of the semi~exact procedure (0= 0, €= 0) to the flow dbout circular
cones (j =1, K =0), this implies the use of nonlinecr approximations for p v and
pPuv,

$
+
fp 7Y cos 8

b Yb b * (e usrs-%ubrb)(y/ys) ‘(434)

Pu =

pu v T

= 5 8§ § S 4
uv = S ( 2 ) (4.35)




and a linear approximation for p,
plb) =py, ¥ Y (4.36)

Since it can be shown that the right hand sides of equations (4.34) and
(4.35) are the sums of infinite alternating series in powers of y/ Ygr where
0s<y/ Y <1, the error of the method is determined by the linear approximation,
Eq. (4.36), for the pressure p (y) across the shock layer.

Having determined the density pb , temperature Tb' shock wave angle 0,
ond the mass fractions Cib (i =0, N, NO)by numerical integration of equations
(4.30) through (4.33), the remaining Cib (i =02, N2) are calculated from the
mass balance equations. Knowing the temperature Tb and all of the mass
fractions C. , the static enthalpy can be evaluated, whereupon the velocity vy
can be computed from the energy equation. Similarly, with density q,r tempera=
ture Tb' and the mass fractions cib known, the pressure Pp is given by the
equation of state.

As far as the variables along the shock wave are concerned, it suffices to
integrate equations (3.28), (3-32) an.i (3.33) in addition to (4.32). Once the
shock wave angle 0, density Py and temperature 'I's are known, all other
variables behind the shock can be computed algebraicly from the expressions given
in Chapter III.

The advantage of the semi-excct procedure over the standard approximation

appears not only in its relative simplicity, but also in the fact that no
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approximations are involved which contain the rate equations or the species mass
fractions. This is important because, for chemically relaxing flow, the Ci are

key variables of particular interest.

4.3 Initial Solution

4.3.1 Frozen Flow

In order to start the numerical integration of the equations presented in
section 4.2, the values of all variables must be known at x = 0. The calculation
of these values will be based on the assumptions that, first, the flow is chemically
frozen and, second, that, in case of a body with non-zero curvature (K $ 0)
there is a small region including the tip where the body may be considered to be
a cireular cone or a wedge (K =0). Since the use of frozen shock conditions
implies that the flow is frozen at the tip, this assumption is not a new one.

With the molecular vibrations in equilibrium, and the gas composition
frozen, there exists no mechanism to destroy the self-similar character of the flow
field, and therefore the classical result of a straight shock wave and constant
properties along the body streamline may be applied. Mathematically expressed,
this means that in equations (4.17) through (4.19), the gradients of all flow
variables along the body and that of the shock wave angle 0 con be set to.zero.
This implies that also the right hand sides of these equations must vanish. Hence,

with &, defined by Eq. (4.16), taking the form
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- ;rs:ﬁ' - %:lg_ (4.37)
and F,, Fy, Fg reducing to

F, = (1-])fan 8 (4.38)

Fy = (1+])tan B 4.39)

Fg = 2(1+] cotBtank) (4.40)

the following algebraic equations, valid for chemically frozen flow about wedges
(i =0) or circular cones {j = 1), are obtained from equations (4.17) through (4.19).
Continvity:
P us(l -j)tanB-% u, (1+j)tanB
-2psvs(1+j cot 8 tan B)=0 4.41)
x=Momentum:
2 . 2 .
(Ps‘"psus Y{1-})tanB- (pb +pb v, )(1+j)ton B
-ZDsusvs('HjcotG tanB) +j (py +ps)tan8=0 (4.42)
y=Momentum:

A U, v (1-j)tanB - 2psvs2(l+jcof 8 tanB)
"‘(pb -ps) 2+ cot B tanB)= 0 (4.43)

Equations (4.41) through (4.43), together with the energy equaticn and the
equation of state, then represent five equations for five unknowns: Ups pb ’ Tb'pb'

and O .
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For a given flight configuration, that is given semi=-vertex angle & and
free stream conditions, the calculation is started with an assumed value for the
shock wave angle 0, and calculating the temperature Ts, the density P and
the pressure P, from the frozen shock conditions, that is, from equations (3.29)
through (3.31), respectively. With the velocity components u ond Vor which
are to be computed from equations (3.24) and (3.25), the velocity at the body

surface, Uy is given by

v .
- 5
Up T VT FToorBFjcof 8 (4.44)

This relation can be derived by first eliminating (pb - ps) from the two momentum
equations, and then replacing the term (pb ub) from the continuity equation.
Knowing the velocity Uy the continuity equation yields the density Py, *
With vy and P, available, the surface pressure can be calculated from one of
the momentum equations. Finally, the equation of state serves to obtain the
temperature T, . The energy equation, not needed so far, is now used to check
the value of Uy - If the velocity U, o calculated does not agree with the value
cbtained from Eq. (4.44), a new value for the shock wave angle 0 must be chosen;

and the procedure is repeated.

4.3.2 Initial Derivatives

The necessity for determining the derivatives of all varigbles at x = 0 arises

from the fact that the equations for the initial values were obtained by equating
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the numerators of the right hand sides of equations (4.17) through (4.19) to zero.
Since, for an attached shock wave, also Y, (0) = 0, the right hond sides of
these equations become indeterminate at the tip of the body. The condition of
frozen flow (Ci = constant) leads to the same difficulty in Eq. (4.20).

A set of iinear equations for the initial derivatives can be derived from the
governing equations by evaluating their limiting expressions as x = 0. For this
purpose let the right hand sides of equations (4.17), (4.28), (4.19), and (4.29)
be denoted by B v 32, 33, and B 4/ raspectively. Specializing them for the

case of zero curvature (K =0, A = x sin 8), and introducing

b= i (4.45)

X
they may be written as follows:

B =_J_[psus(tqnﬁwjé)"%ub(f0n9+j6)

1 Y,
- 20 v (1%] & cot e)] (4.46)
B, = —3;—[psus2ﬁanﬂ-j5)- o, 2 (tanB +j )
-2Psvsus('|+j5cot9)+(ps-pb)tan3] (4.47)
53 = —};—[Psusvs (tanB-jﬁ)-Zpsvsz(l+j5cot9) |

= (p - p,) (2 %] Ocot 9)] (4.48)
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B4 = wib + o { (1+jdcot 9) W.'.s

) _YL (Cibﬁcis) [ps us(ton B=j0) -2 ps vs(]+6j cofe)]}(4-49)

Then applying L 'Hospital 's rule in order to resolve the indeterminacy, the following

limiting expressions can be obtained:

lim B, = BT, s +(1-§) (o u 0, *o_V, Q,)
xog | sin 2B inZs 11 Pab2 " Y= T3
-2 (cotB+tjcotf) (p v O, tp V Q) d¢
) ' 2 s ® 4°( dx
o d
- (1 +1) <. .
1+ 2 (o u,) (4.50

2 2
T = (ps+psus )-(pb+pb “b ) + Ps Ys Vs
xMyBy 7€ in 28 i 2g

- 2 + Q
+(1 j)(pmus Q2+2pe'.v"'° l"503){-st(Qs-r*""Ql Poo Ts 2)

do
- i + Q.+ Q
2 (cotB +j cot @(pmus vsﬂz P Ve, v ilg TP Vmus 4)} T

d
- e(1+]) 4= (o, v, )¢ i3 (4.51)



x—0 3

2

+ -

ps us Vs + ps ps vs pb
“Sin 28 2

sin ~ B
(1 -1) (b Ys V.'.02 ¥ Py ey, Q3 TP Ve by 04)

- o n_+
2 (cot B jcofﬁ)(pmvs 2 pst 04)vs

2
. do
RZs (2cot6+jcot9)(psTwQ] +mes 02)} T
dp,
+(2cotB+jcotB) T (4.52)
and, finally,
E“TOB“ = W.'.b +a [(l'i‘j tan B cot 0) wis
dCip

(g e~ ] (4.53)

where it is noted that the above expressions are to be evaluated at x = 0 only.
If the limiting process is now applied to equations (4.17), (4.28), (4.19),

and (4.29), and if the expressions given above are inserted on their right hand

sides, the following equations for the initial derivatives in terms of the initial

values result.

Centinuity:
dp du
b b do
b dx * R Tax T Pp Vg Q5 d x 0 .(4'54)
x-Momentum: d \ dpb
(1%¢) d x te(2+)) b Tdx

du
+[I=+e(3+2j)]pbub -d_i-’.- sep_v2 a, ‘;i =0  (4.55)
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y~Momentum:

2 do _
T t P, Ve, G =0 (4.56)

Species continuity: d c;b

[14+e0140) )0, v, —x

= wib + a(]+jtanB cot ) Wis (4.57)

where 0 5/ Q o ond 07 are dimensionless functions listed in Appendix B.

Supplementing equations (4.54) through (4.57) by the energy equation and

the equation of state,

— T =
% ax TP ax T 7O (4 58)
dp, dp, dT, o, Ty V.2
xR4T ax "% o T 570 ¢

where A is o characteristic length, and L and S are dimensionless functions

defined in Appendix A, this set can be solved for the initial gradients. The

resulting expressions are:
2

u c T
(5%) - l.”e(”j)]”}“ P ®Zy Ly - P2 5,) @0
X=0 ® ®

where



F= "bzi [l+e(l +j)] n - (1 +e)sz}n7

\1_b
-RZbcprb{[l+e(3+2j)] v Qs-enb'l-(l-!-e)f)?}

u
-ekzbub2 [(2+j)—\7395-06] (4.61)
dpb QWVE, { Uy
s - 1+e (3 +2j)
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It should be noted that, since no assumptions or approximations were used in
deriving the initial gradients from the governing equations, the compatibility of
equations (4.60) through (4.64) with equations (4.30) through (4.33) is assured..
Again, fora =0 and €= 0, the expressions given above reduce fo the initial grad-
sents to be used for the semi-exact procedure. Letting @ =1 and €= 1 results in

the initiol gradients for the standard opproximation .
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4.4 Equilibrium Flow

As mentioned earlier, an equilibrium flow solution in connection with non-
equilibrium flow dbout wedges or circular cones is useful because it provides a
check, in an approximate way, for the values which should be approached
asymptotically by the nonequilibrium solution. There are two reasons for the
approximation. It will be shown in the discussion of the results that, for non=
equilibrium flow cbout cones, the shock wave is curved. By assumption, the
shock wave angle O at the apex is the same as that for frozen flow, while further
downstream, 0 approaches the equilibrium shock wave angle which is always
found to be smaller than the shock wave angle 0 for frozen flow. Consequently,
those streamlines which have passed through the stronger portion of the shock wave
form a region close to the body surface which must have a higher entropy than the
stream lines farther away from the surface. This region is sometimes called an
entrop)} layer. Furthermore, it is known from theory that, in contrast to equili~
brium, nonequilibrium dissociation and recombination are nonisentropic processes.
Thus, the chemical relaxation in the flow provides another mechanism by which
entropy is increased. It is therefore concluded that the equilibrium state which is
reached ofter complete relaxation has a higher entropy than an equilibrium flow,
originating from the same free stream conditions, would have. Since, by assumption,
the two flows have the same tota! enthalpy, but their entropy is different, they

cannot reach the some final state.
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Assuming that the air is in thermodynamic equilibrium everywhere in the
flow field, the same considerations as for frozen flow apply, namely, that the
flow field is similar. Again, this implies that oll flow field parameters are
constant on planes, or coaxial cones intersecting at the tip of the body.

Newman (Ref. 36) has used equations (4.41) through (4.43), in connection
with thermodynamic data from tables, to calculate conical flow parameters for air
in equilibrium. He found that these algebraic equations yield results which are in
excellent agreement with the results from the numerical integration of the Taylor~
Maccoll differential equation by Romig (Ref. 21). Similar calculations by Thoenes
(Ref. 16, 17) for a simple air model, but using equations analogous to those pre-
sented in Chapter II for the thermodynamic properties, confirmed this agreement .
The more sophisticated air model employed in the present investigation requires a
method of calculation which differs slightly from that used previously, and is there=~
fore outlined below.

For an assumed shock wave angle 0 the equilibrium conditions behind the
shock wave can be calculated as described in Section 3.2.3, whereupon the body
surface velocity, Uy 1 is computed from Eq. (4.44). Substituting this expression
into the continuity equation, Eq. (4.41),yields

[p,u, (1D~ 20, v (cot B+ j cot 8) ]2 cot B+ cot ©)
o, = s s s s

(4.65)
(1+j) [us (2cotBtj cotB)"’vs]
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Solving the y~Momentum equation, Eq. (4.43), for the body surface pressure
results in

2[35v52 (l+jcof6tcm3)'psusvs (1-j)tanB
=p +
P, P 2 +jcot O tanB

(4.66)

Starting from a first guess for the body surfoce temperature, Tb , together with the
density at the body surface, Py from Eq. (4.65), the equilibrium species mass
fractions must now be calculated by an iteration, using the. equations provided in
Section 2.6. This iteration can be terminated when the mass fractions Cib and
the temperature L thus obtained, together with density oy and pressure pg
from equations (4.65) and (4.66), satisfy the equation of state.

The energy equation, not used so far, again provides the closing link in
the loop. If the value for the velocity at the body surface, Uy obtained from
the energy equation does not agree with the one calculated from Eq. (4.44), the

procedure has to be repeated by selecting a new value for the shock wave angle o.

4.5 Numericol Techniques

For the numerical evaluation all equations were converted to dimensionless

form by introducing the following dimensionless variables:



70

1= Y = Y v= B '=...I_

u v v A H) o ;i T T,

= P . ' = h . '=_c_&. .

) o i h e RN 5 (4.67)
g, n= 4L

Since infinite long cones have no typical dimension, the characteristic length A

was defined as a dissociation relaxation length by

A= (4.68)

().

where Z is the compressibility factor defined by Eq. (2.17). The equations were
then programmed in FORTRAN V, suitable for the UNIVAC 1108 located aof the
University of Alabama Research Institute. For simplicity of program check-out
and debugging the problem was programmed in three separate parts for frozen,
equilibrium, and nonequilibri‘urn flow.

The frozen flow program consists essentially of a double loop iteration,
following the process of solution as described in Section 4.3.1. The process is
started with an assumed value for the shock wave angle O in the main progrem,
which then calls a subroutine for the iterative calculation of the temperature
behind the shock, Ts , from Eq. (3.29). If the difference in the body surface

velocity, up which is computed from two independent equations, is larger
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than a specified minimum, the computation returns to the main program and resumes
with an adjusted value of the shock wave angle 0. The built-in limit of ten
iterations was in no case exceeded. Running times, including compilation of the
program, are in the order of 5 to 10 seconds, even with double precision.

The structure of the equilibrium flow program is analogous to the one for
frozen flow, however, with additional loops for the calculation of the equilibrium
compositions as function of density and temperature.

The nonequilibrium flow program is set up in terms of some eighteen sub~
routines for the various thermodynamic and other functions discussed in Chapters Il
through IV. Its core consists of the standard fourth order variable step Runga~
Kutta integration routine RKVS, which is described in detail in Ref. 38. Using
the initial gradients and a simple Euler integration to calculate values for all
variables at an incremental distance away from x =0, the computation switches
over to the Runga=-Kutta integration of equations (4.30) through (4.33). Numeri-
cal problems and running times depend on the case and will be discussed in

Chapter V.
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CHAPTER V

DISCUSSION OF RESULTS

5.1 Frozen Flow

The success of the one-strip integral method when applied to the com=-
putation of supersonic flow of a perfect gas {Y=1.4) about circular cones was
previously demonstrated by South (Ref. 12). He showed that, particularly for
higher free stream Mach numbers (M_ > 3), the results from the integral method
are in excellent agreement with the charts in Ref. 39. In the present investiga-
tion, chemicolly frozen flow was therefore studied only to obtain proper initial
conditions for the caiculation of chemically relaxing flow, as pointed out in
section 4.3.

Figures 7 through 12 show the variation of some typical flow field variables
with cone semi-vertex angle and free stream Mach number, for undissociated air
in vibrational equilibrium. In Figures 7, 8, 11, and 12, the perfect gas results
are olso given for comparison. In view of previous findings (Ref. 12), the
difference between the perfect gas results and those of the present investigation
can be attributed to vibrational equilibrium. It can be observed that for those
combinations of free stream velocity ond cone angle where the temperature in
the shock layer becomes high enough to cause significant molecular vibration.,

the shock wave tends to be closer to the body than for the perfect gas case.
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Simultaneously, there is o slight increase in the surface velocity, while the

surface pressure is hardly affected ot all.

5.2 Equilibrium Flow

Rather than to duplicate the work of Newman (Ref. 36), conical flow
paremeters for air in thermodynamic equilibrium are presented here in order to
demonstrate the validity of the five component air medel for the range of cone
semi-vertex angles and “ree stream conditions considered in this work. The use=
fulness of an equilibrium flow solution in connection with calculations of non-
equilibrium flow was already discussed in section 4.4.

Figures 13 through 16 present a comparison of equilibrium flow 1esults
ocbtained from the one=strip integral method, used in this investigation, with
results obtained by integrating the Taylor-Maccoll equation (Ref. 21). In
addition, these figures represent a comparison of the thermodynamic properties
of the air model used in the present investigation with the thermodyn;:mi'c tables
of Blackwell et al ., which were used in Romig's work (Ref. 21).

Thirteen cases for a variety of cone semi-vertex angles (30 < 8 <45) and
free stream Mach numbers (10 < M_ S30) were selected to cover a wide range
of values of the hypersonic similarity parameter (5 = M _ sin 8<18) at two
different free stream pressures. In all cases, the results from the two calculations,
each using a different air model and a different method of solution, agree quite

well.
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Additional cases for conical equilibrium flow were calculated for the
purpose of comparison with chemically relaxing flow. In particular, it will be
shown at the end of this chapter, how the state of equilibrium, which is approached
asymptotically by the nonequilibrium flow, compares with the state of equili-
brium found when thermodynamic equilibrium is assumed throughout the flow
field. In the next section, these equilibrium states are, for simplicity, labelled

"asymptotic equilibrium" and "conical equilibrium”, respectively.

5.3 Noneguilibrium Flow

Nonequilibrium flow calculations have been carried out for various pur=
poses, and the free stream conditions were chosen accordingly. Table V gives a
detailed summary of all cases which were investigated, while Fig. 17 displays,
for each case, the three independent characteristic parameters (semi=-vertex
angle 9, free stream velocity, and altitude) in a velocity=altitude diagram.

Cases 1 and 2 were selected principally for the purpose of comparing the
results from the integral method used in the preser.t investigation, with those of
the method of characteristics (Ref. 20). Case 3 was computed to check previous
calculations using a much simpler air model (Ref. 16). Cases 4 through 8 are for
similar cones at constant altitude but at different free stream velocities. Cases
? and 10, together with case 5, were selected to study the effect of different

altitudes on all flow variables at the same cone angle and flight velocity. The
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influence of the semi-vertex ongle © on the flow parometers is studied by com-
paring cases 10 through 13, in which both altitude and free stream velocity are
kept constant.

Figures 18 and 19 show the species mass fractions on the cone surface for
cases | and 2, respectively. The slight difference in the results near the tip of
the cone might be due to one or more of the differences in the cal culation
procedures. A small difference in the initial volues, for example, which is
undetectable from the graphs shown in Ref. 20, together with different expressions
of the equilibrium constants used for the reactions IV and VI (see section 2.5),
may be one reason for the discrepancy. Another cause may be the fact that, in
order to use the method of characteristics, a certain small but finite area of
frozen flow has to be assumed near the tip, while no such assumption is needed
for the integral method. In any case, the results for the gas composition from the
two methods are almost identical for x >4 mm. The temperature and density
along the cone surface, plotted in figures 20 and 21, show the same excellent
agreement .

The variation of the shock wave angle along the length of the cone is
shown in Fig. 22. The results from the two methods agree insofar as both methods
predict that the shock wave ongle 0 should decrease. While the characteristics
solution from Ref. 20 seems to indicate that the shock wave angle o should

approach its value for conical equilibrium flow monotomically from above, the
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integral method solution indicates a limiting value for 0 which is slightly
higher than that. As a matter of fact, when the integration was carried out to a
distance of about 70 cm away from the tip for case 2, it was found that the shock
wave angle has a minimum value (0= 44.39) between x = 25 mm and x =75 mm,
then approaches its asymptotic equilibrium value (0 = 44 .41) from below. From
x =23 cm onward none of the variables show any change in the first four sign-
ificant figures. Apart from this, it is noted that the difference in shock wave
angle between frozen flow and equilibrium flow is relatively small (only about
1.5 degrees in case 1, and even less than that in case 2),

Cone surface pressures for cases 1 and 2 may be compared in Fig. 23. In
both cases, the difference between the values for frozen flow and those for equili-
brium flow is less than 2%. The method of charocteristics is seen to predict a
slightly lower surface pressure (lower by about 0.5%) than the integral method.

Case 1 also was the only case that presented numerical problems. The
dersity, the shock wave angle, the pressure and the surface velocity exhibited
small damped oscillations, of which an example is given in Fig. 23a. It was
found that a systematic removal of all possible sources for numerical inconsistencies
in the program reduced the amplitude of these oscillations considerably. A
further reduction was achieved by finding an optimum size for the initial step
which was then taken to be AS= 10-5 for all remaining cases. The fact that

case 1 has the lowest body surface Mach number, in connection with other
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fir. ings, indicates that the prabable couse for these oscillations lies in a viola-
tion of the stability criterion for hyperbolic equations. No definite conclusions
have been reached at the present time since it is felt that this problem requires
a more detailed analysis.

The body surface velocity and the surface Mach number for cases 1 and 2
are shown in figures 24 and 25, respectively. No results from the method of
characteristics were available for these variables. However, the fact that the
authors of Ref. 20 present results for wedge flow where u, was considered fo be
constant, permit the conclusion that they also found that the change in surface
velocity along the body surface is negligible.

For both, case 1 and case 2, the flow field has been calculated up to @
dimensionless distance of £= 10.0 from the tip of the cone. This corresponds to
a physical distance of about 10 mm in case 1, end about 70 mm for case 2. Com-
putation times were 146 sec for case 1, and 93 sec for case 2. This contrasts with
computation times of about 1 hour per case on the BRLESC computer (Ref. 20) for
the method of characteristics calculations. For the integration of case 2 up
to €= 100.0, the running time was only 252 seconds in this work.

Figure 26 shows the influence of the free stream velocity on the suricce
species mass fractions for constant altitude and cone semi-vertex angle. Including
the nitric oxyde mass fractions, which show the lowest values for the highest
velocity, all variations are as expected. The large difference in the characteris -

tic relaxation lengths is particularly noteworthy. The surface temperatures,
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shown in Fig. 27, ogain display the drastic drop near the cone tip, which is
caused by the strong dissociation grodients in this region. Surface density, shock
wave angle, and surface pressure are shown in figures 28 through 30. Their
limiting volues for large & show only a slight dependence on the free stream
velocity, in contrast to the gas composition and the surface temperatures.
Figures 31 through 33, representing a 30° cone at constant free stream
velocity but at three different altitudes, clearly demonstrate the validity of the

nonequilibrium scoling law
p,+ L = constant

which is discussed in detail in Ref. 40. Here L is some characteristic dimension
of the flow field or the body. According to the theory, nonequilibrium scaling is
applicable for that region of the relaxation zone where the reactions are predomi-
nantly dissociation reactions. As seen from the production rate equations given
in Chapter II, the dissociation rates are proportional to the density. Once the
state of equilibrium is opproached, the rate of recombination, being proportional
to the square of the density, becomes of equal importance, and therefore the
nonequilibrium scaling law should cease to be valid. Figures 31 through 33 show
that this is precisely so.

The length scale in these figures is somewhat arbitrary because the reference

density was chosen for convenience such that the characteristic length
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ref

which should theoretically be the same constant for all cases, was equol to one
meter for case 10. This means that the x scale is practically identical with the
£ scale, which permits an easy conversion to the actual physical length in each
case.

The reason for the close agreement in all variables shown, in spite of
differences in the free stream temperature, lies in the fact that, for hypersonic
conditions, the total enthalpy of the free stream is given mainly in terms of the
velocity, while the free stream temperature contributes only a negligible amount.
On the downstream side of the shock wave the situation is almost opposite, and
therefore the absolute temperature, which controls the reactions, is practically
the same in the three cases.

Figures 31 through 33 show that the results, plotted versus x, are identical,
or at least in very close agreement, up to x =10. Forx >10, case 10 rapidly
approaches equilibrium, which is reached near x = 80. In fact, for x >80, no
changes in the first four significant figures for the density ¢ and the temperature
T at the body surface could be cbserved. The curves for case 9 show a tendency
towards equilibrium at x = 100, but no such trend can be recognized for case 5.

It is also noted from figures 32 and 33 that the asymptotic equilibrium values of
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the surfoce temperature and the surface density do not agree with the respective
values for conical equilibrium.

It is concluded that, under otherwise identical conditions, the altitude has
a decisive influence on the flow field variables. While, for practicol purposes,
the state of equilibrium is reached at a distance of about 50 cm away from the tip
in case 10 (40 km altitude), this equilibrium state is not yet reached at 150 m
from the tip in case 5 (80 km altitude).

The influence of the cone semi-vertex angle 8 on the flow field is shown in
figures 34 through 37. It is found that, qualitatively, an increase in 8 has the
same effect as an increase in free stream velocity. Actually, the effect of a
change in 8 depends very much on the other parameters, nomely altitude and
free stream velocity. It is shown in Fig. 35, for example, that for a variation of
8 from 20° to 35°, the temperature at the cone tip changes by roughly 8000°K .
The values for conical equilibrium indicate that, once equilibrium is reached,
the temperatures at the body surface still differ by 3000 K, approximately .

Figures 38 through 40 display the sirong dependency of the characteristic
relaxation length A on free stream velocity, altitude and semi-vertex angle.

For the examples discussed herein, A varies approximately between 10 3 and
102 meters, that is, by five orders of magnitude.
Finally, Fig. 41 shows a comparison of conical and asymptotic equilibrium

in a Mollier chart for air in thermodynamic equilibrium. The three equilibrium



8l

states shown v are fixed by their respective values for the enthalpy and the
density. First, the figure demonstrates that conical equilibrium flow is characte~
rized by an isentropic compression from the shock wave to the body, since the
two equilibrium states are located on the same vertical line. Second, it is

shown that the value of the entropy of the equilibrium state, which is asymptoti~
cally approached by the nonequilibrium flow, differs from the entropy value for
conical equilibrium, as discussed in section 4.4. Whether the entropy increase
shown is mainly due to the difference in the shock wave angle for the two situa-
tions, or due to the relaxation process cannot be explained unless more detailed
calculations are carried out. Finally, the close agreement of all variables cal -
culated for conical equilibrium at the body (e.g. Tb = 5527 °K, Z b 1.255)
with the corresponding values indicated in the Mollier chart (T b~ 5500°K,

Z,~ 1.253) provides another demonstration for the accuracy of the air model and

its thermodynamic properties as used in this investigation.

5.4 Conclusions

A semi-exact procedure, which uses exact forms of the x~Momentum and
species continuity equations along the body surface, was shown to yield results
which are in excellent agreement with those obtained by the method of characte-
ristics. Although this procedure was also successfully used in the investigation of

nonequilibrium blunt body flows (Ref. 3,4,5), it was reported to be always
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unsuccessful for the case of vibrational equilibrium flow past pointed bodies
(Ref. 12, 13).

The amplitude of some bounded oscitlations, which were encountered in one
case with o relatively low surface Mach number near the cone tip (Mb <2.5),
could be reduced to a negligible amount by carefully removing all possible sources
for inconsistencies in the program. The rapid increase of the surface Mach number
near the cone tip apparently caused the oscillations to stabilize quickly, and no
further problems were encountered.

Although it is recognized that the method of characteristics furnishes infor-
mation about the variables within the shock layer which cannot be obtained by
the one-strip integral method without additional calculation schemes, it appears
that running times for the semi-exact procedure used in this investigation are
drastically shorter than those reported for the method of characteristics.

The detinition of a characteristic relaxation length for dissociation,
A=(dz/ dx)-] » was found to be extremely use.ful . Its principal advantage is
that it transforms all problems to the same length scale, thereby avoiding the need
to specify integration ranges for each problem individually. The latter process
could be very time consuming because of the strong variation of A from case to
case (10-3< Alm] < 102, in the examples discussed).

The application of the nonequilibrium scaling law, p_ . L = constant, to
cases covering a wide range in altitude clearly demonstrated its validity for the

type of flow considered in this investigation.
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It was olso demonstrated that, the three parameters, cone semi-vertex
angle, free stream velocity, and altitude, exert a strong influence on the
variation of most flow field variadbles. 1t is therefore concluded that, for cases
where the characteristic length is of the same order of magnitude as the length
of the conical body, large variations of the gas composition, the temperature and

the density along the streamlines have to be expected in the entire shock layer.
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TABLE I

GAS MODEL DATA

Adopted Primary Quontities

Voo, 0.21

(Yh2ds 0.79

Z, = po/po RTo 1.0

P 1.01325 - 10° N/m?

T 288.15 °k

O

R* 8314.32 J/ kmol %k
N 6.02257 - 1020 kmol !

h 6.6237 - 10734 J- sec

Derived Quantities

(COZ)o =m_ 0.232 918

(S 0.767 082

M 28.850 335 kg /kmol

R 288.187 988 J/Ag °K

p 1.220 174 kg / m°




TABLE II

ATOMIC AND MOLECULAR CONSTANTS

Molecular Rotational Vibrational Char. Temp. Electronic Electronic
Weight Temperature Temperature of Dissoc. Degeneracy Temperature
Species M. 1) x of 2) gV 3) e:" 3) g 4) g® 4)
i i i i j j
kg / kmol °K °k K °k
02 31.9988 4.20 2256 59 380 3 0
2 11 390
1 18 990
N2 28.0134 5.80 3374 113 260 I 0
O 15.9994 5 0
3 228
1 326
N 14.0067 4 0
10 27 700
NO 30.0061 2.50 2719 75 490 2 v
2 174
1) Ref. 35 2) Ref. 24; 3) Ref. 20; 4) Ref. 34, Volues for NO from Ref. 23.
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TABLE I
DISSOCIATION RATE CONSTANTS

4 Reaction Third Body M kd [m3 / kmol - sec ], Ref. 20
1 | o.+M720+M N.., N, NO ! =1.2.10% 71713 exp(-0../T)
2 2t N d (N2) : P 2/
(J =
O, kaoz) = 3-C "d (N2)
J ) . X
o Koy = 175 1073 Ty )
j " . 17 =15, .*
| N,*Mz2N*M | O, O, NO K og) = 9-9:107 171 exp -8,/ T)
R ) I
N, kagnz) = 38 kj02)
1 ) i
N kgoe) = 1515 kyo2)
m | NO+M=N+O*M| O..N.,0,N,NO I 2501081 S exp (-8 /)
T 2: 2: riN, d * P NO
IV | NO+0z0,*N Y =24 10° 7075 exp (- 19230 /1)
Y i} 10
\Y; N, +O 2 NO +N kg = 5.0-10 ~ exp (-38000/T)
Vi | 0,+N,= 2NO W = 911020 1722 exp (- 65000 /)




TABLE IV

EQUILIBRIUM AND RECOMBINATION RATE CONSTANTS

’ Equilibrium Constant K M k =k,/K
c r d c
I o yo 10705 ot I _ 12 -]
I Kc 1.2-10°T exp ( 902/T) N2,N,N0 kr(N2) 10°T7T
I _ I
kmol /m3] 02 I‘r(02) 3.0 |(r (N2)
1 _ 9
o) k: ©) 1.75-10
It.,a.10 -g" | s e.1pl3 .15
1 K, =1.8-10 exp.( eNz/T) 0,,0,NO kr(oz) 5.5:10°T
il I
N k = 3.03k
[kmol /m°] 2 ¢ (N2) r 02)
It _ 11
N ke () 15.15K (1)
HI_ , o3 g 1l i agal5- 1.5
| K =4.0-10 exp (-8, /T) 0,/N,,0, k. 1.3-10° 1
(kmo! /m3] N, NO
v KDY 23333107 192 exp (-16 110/1) V- 7.2-10'° exp (-3120/7)
\YJ KZ =4.5 exp (-37770 /1) k:, = 1.111 -lOloexp(-230/|')
vi| kVT=1.35 1071700 exp (-21660/7) W= 6741 10" exp(- 43340/7)

K}: through K!:H from Ref. 25, Kivthrough KZI calculated.
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TABLE V

TABULATION OF CASES FOR CHEMICALLY RELAXING FLOW

Fpoe" | oanh Vo) % 4 T M_ Comments
km m/sec kg /m °K
T | 45.43 31 6638.0 1.287-10°2 | 273.16 20 For comparison with method
2 | 41.07 n 5974.0 " 0 18 of characteristics (Ref. 20)
3| 25 40 6390.0 | 3.996-107 | 250.35 | 20 For comparison with Ref. 16
4| 30 80 11186.0 | 1.999-107° | 180.65 | 41.4
5 " " 9350.0 " " 34.6 To study influence of free
" " u " stream velocity on flow field
6 7909.6 29.3 parameters
7 [} 1] 6750-0 n " 25
8 [ " 5400.0 n n 20
9 " 60 9350.0 3.059- 10-4 255.77 29.1 To study infi uen;e of
10 B 40 n 3.996 - 10-3 250.35 29.4 altitude GI‘IC' . 5)
11 35 " " " " " To study influence of
" " " " " semivertex angle
12| 25 Gincl. # 10)
]3 20 " n n " H

*) Parameters which are considered as independent.
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Fige 3 Coordinate system on a pointed body with convex
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Fige 4 Differential flow field geometry for the determination of
the metric coefficients.
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shock wave

Fige 5 Velocity diagram for locally oblique shock waves.



Fig. 6 Strip arrangement in shock layer.



Shock wave angle, o
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Fige 7 Variation of shock wave angle g with cone semi-vertex angle 8 (chem.
frozen, vibr. equil., T_ =250 "K).



Angular shock layer thickness, 8 = 0 -8
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Fig. 8 Variation of angular shock layer thickness B wnh cane semi-vertex

angle 8 (chem. frozen, vibr. equil., T, =250 k).
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vibr. equil., T_ = 250 °K).
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Surface compressibility factor, Zb
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Fig. 13 Surface compressibility factor for equilibrium cone flow
(T_=273.16°K, p, = 1.0atm).
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Species mass fractions, cib
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Fig. 18 Cone surface species mass fractions for case 1 (8 = 45.43°,
V, = 6638.0 m/sec, T_=273.16 °K, p_ = 0.01 atm).
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Fig. 19 Cone surface species mass fractions for case 2 (8= 41 .07°,
V_ = 5974.0 m/sec, T_=273.16 °K, p_ = 0.01 atm).
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Surface velocity, u /v,

Surfoce velocity, %N,
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Surface Mach number, Mb
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Fig. 25 Cone surface Mach numbers for cases 1 and 2 (T_ =273.16 °K,

P, = 0.01 atm).
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Fig. 27 Influence of free stream velocity on cone surface temperature

(8 =30°, altitude 80 km).
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altitude 80 km).
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APPENDIX A
SOME EXPRESSIONS RELATED TO THERMODYNAMICS
Frozen specific heat ¢_:

A"
2 902 /T

ev
02
= 5+
cp R*{Y02[35 (T )

(ee‘c’)z /T-I)Z]

2 0y, /T

N N2
+YN2[3.5+<N2) - 2]

2 0y /T

v
eNO e NO
r Y |3.5 +
NO T NAARE
(e N7 L)

+ 2.5 (Yo + YN) }
Frozen speed of sound, ac

| c RZT
af= P

Dimensionless functions L, §:

dC
= A i
L Vi z:hi dx

R* T, | dCi
$= A —0 E
sz i Mi d x
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(A-1)

A-2)

(A-3)

(A-4)
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APPENDIX B

DIMENSIONLESS FUNCTIONS I; FOR DIFFERENTIAL SHOCK
RELATIONS AND INITIAL DERIVATIVES

2VmcosU[Vm sin0 (V_sino-B) - (2-b (Ims~h°)]
Qy = ) ®-1)
Tm[(RZ@ -2cps) B + (V_sin 0)b cps]

V,cos 0 tan O 2
02 = 5 [I + 32 (T, cps Ql -V, sinUcosU)] B8-2)
where
RZ_ T,
b = 1+ 5 8-3)
(V_sin0)
B = Y Vosino)2- 2 -h) B-4)
0, P (2
93 = (T -1 ) (sinCcusB +cosTsinB ) - (—p—s-—) sin 0 sin 392
®~5)
P ‘ o, 2
04 =( ;. -I)(sinUsinB- cosTcosB )~ (-—5:-) sin 0 cos B 02
B-6)

The following expressions are valid only at x =0 for K =0:



135

1 { Ps Us-nb “% c)s Vs
P V, (27])) sin 2B sin” B

+ 2(cotB +jcoth) (pmvs 02+ psv“’ Q) ®-7)

+ (1 + Q
j(1 +tanBcot8) (p u L, te Vv, 93)}

2 2
] { (pb TPy Yy )~ (ps+psus ) P Vs Vs
PV sin 2 B sinEB

2
[ ] + n
+](l+tunﬁcot9)(pmus 0 2ps V., u 3)

2
®-8)

1 +
+2(cofﬂ'*1cot6)(pmusvs 02 +pst v 93 pstus 04)

+jfanBcof9(psTle+pm Ts QZ)RZs }

2
+ -
] {[psusvs + I:’s psvs pb
2

P Vo sin 28 éin’ g

-3 + Q
j (1 +tanBecot 8) (p,, vV, 02 +p$va$ﬂ3 pst v, 4)
. 2 . ~1
-~ 2 (cotB *jcotB)(p, v 02 +2pst st4):|(2 cot8 *j cot 8)

- Q. + 0 £
st(psT“’ 1 meTs 2)} B49)
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APPENDIX C
FUNCTIONS oij AND Ai IN EQUATIONS (4.30) THROUGH (4.33)

an T ”: (€-1)
L (c-2)
a, = RZb Tb + eub2 (C-3)
@, "b[" z, - (1+¢) upb] (C-4)

Aqq = (1+] gcosB)(pm u v, 92 + P, Ve v 93 + ﬂst usﬂ4) (C-5)

c|44 =pb Ub (C-6)
up )
A| = ;. {Dsus[(lﬂ(ys)tqn B'(]-Kys)jésin 9]
- pbub[(lﬂ( ys)tuna-l-j 5 sin 6 ]
= p v (1*jocosB) (2+3Ky) }
- A3
"“b(pm”s Q2*"’5\@9“3)(‘*’if’c:c:rse)“-"—""m
33
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T

2
A [ () 3]

+

v, { (Ps P, usz) [(H Ky,) tonB-(l-Kys)j'és;ne]

'(Pb+ob u:) [(l"'l(ys)i‘cmﬁ'*j-f-J sinB]
=P U v (1+j bcos9) (2 +5Kys)
+j5sin9[pb+ps ('|+Kys)] }

-e(l+j3cosa)[RZs (PS'L, Q] +0, Ts 92)

vo W2a vzp v, u o, |22 (c-8)

O Ys 2 ps © Ys Y3 | Ta
33

1 LT ]

— - - )

v, {ps u v [(1+I(ys) tanB = {1 Kys) jo sin ©

+ (pb-ps) (2 +j'5c059)-ps vsz (l+j3 cos9) (2+3 I(ys)

"'[ -p + 0o u2+2p u2(1+'5c059)]|(y (C-9)
P~ P bb 5 s i 5

W, *+a (1+Ky) (1+] Scos 0) W,

a(C, -C 5
. b IS){ps”s [(”Kys)fﬂns"“'”s)j > sin © ]

s

- i8 +
sts(]"'j cos8) (2 3I(ys) }

Ag

+a (Cy = C, ) (1+]8cos8) (Ao u 0y *+0 Vo ) " (C-10)



